

Mathematics: analysis and approaches Higher level Paper 3

9 May 2023

Zone A afternoon | Zone B morning | Zone C afternoon

1 hour

Instructions to candidates

- · Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- · Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- · A clean copy of the mathematics: analysis and approaches formula booklet is required for
- The maximum mark for this examination paper is [55 marks].

Answer all questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 24]

This question asks you to examine the number and nature of intersection points of the graph of $y = \log_a x$ where $a \in \mathbb{R}^+$, $a \ne 1$ and the line y = x for particular sets of values of a.

In this question you may either use the change of logarithm base formula $\log_a x = \frac{\ln x}{\ln a}$ or a graphic display calculator "logarithm to any base feature".

The function f is defined by

$$f(x) = \log_a x$$
 where $x \in \mathbb{R}^+$ and $a \in \mathbb{R}^+$, $a \neq 1$.

(a) Consider the cases a=2 and a=10. On the same set of axes, sketch the following three graphs:

$$y = \log_2 x$$
$$y = \log_{10} x$$
$$y = x.$$

Clearly label each graph with its equation and state the value of any non-zero *x*-axis intercepts.

[4]

(This question continues on the following page)

(Question 1 continued)

In parts (b) and (c), consider the case where a = e. Note that $\ln x = \log_e x$.

(b) Use calculus to find the minimum value of the expression $x - \ln x$, justifying that this value is a local minimum.

[5]

(c) Hence deduce that $x > \ln x$.

[1]

(d) There exist values of a for which the graph of $y = \log_a x$ and the line y = x do have intersection points. The following table gives three intervals for the value of a.

Interval	Number of intersection points
0 < a < 1	p
1 < a < 1.4	q
1.5 < a < 2	r

By investigating the graph of $y = \log_a x$ for different values of a, write down the values of p, q and r.

In parts (e) and (f), consider $a \in \mathbb{R}^+$, $a \neq 1$.

For $1.4 \le a \le 1.5$, a value of a exists such that the line y = x is a tangent to the graph of $y = \log_a x$ at a point P.

(e) Find the exact coordinates of P and the exact value of a.

[8]

[4]

- (f) Write down the exact set of values for a such that the graphs of $y = \log_a x$ and y = x have
 - (i) two intersection points;

[1]

(ii) no intersection points.

[1]

2. [Maximum mark: 31]

This question asks you to examine linear and quadratic functions constructed in systematic ways using arithmetic sequences.

Consider the function L(x) = mx + c for $x \in \mathbb{R}$ where $m, c \in \mathbb{R}$ and $m, c \neq 0$.

Let $r \in \mathbb{R}$ be the root of L(x) = 0.

If m, r and c, in that order, are in arithmetic sequence then L(x) is said to be an AS-linear function.

(a) Show that L(x) = 2x - 1 is an AS-linear function. [2]

Consider L(x) = mx + c.

(b) (i) Show that
$$r = -\frac{C}{m}$$
. [1]

(ii) Given that
$$L(x)$$
 is an AS-linear function, show that $L(x) = mx - \frac{m^2}{m+2}$. [4]

(iii) State any further restrictions on the value of m. [1]

There are only three **integer** sets of values of m, r and c, that form an AS-linear function. One of these is L(x) = -x - 1.

(c) Use part (b) to determine the other two AS-linear functions with integer values of m, r and c. [3]

Consider the function $Q(x) = ax^2 + bx + c$ for $x \in \mathbb{R}$ where $a \in \mathbb{R}$, $a \neq 0$ and $b, c \in \mathbb{R}$.

Let r_1 , $r_2 \in \mathbb{R}$ be the roots of Q(x) = 0.

- (d) Write down an expression for
 - (i) the sum of roots, $r_1 + r_2$, in terms of a and b. [1]
 - (ii) the product of roots, r_1r_2 , in terms of a and c. [1]

(This question continues on the following page)

(Question 2 continued)

If a, r_1 , b, r_2 and c, in that order, are in arithmetic sequence, then Q(x) is said to be an AS-quadratic function.

- (e) Given that Q(x) is an AS-quadratic function,
 - (i) write down an expression for $r_2 r_1$ in terms of a and b; [1]
 - (ii) use your answers to parts (d)(i) and (e)(i) to show that $r_1 = \frac{a^2 ab b}{2a}$; [2]
 - (iii) use the result from part (e)(ii) to show that b = 0 or $a = -\frac{1}{2}$. [3]

Consider the case where b=0.

(f) Determine the two AS-quadratic functions that satisfy this condition. [5]

Now consider the case where $a = -\frac{1}{2}$.

- (g) (i) Find an expression for r_1 in terms of b. [2]
 - (ii) Hence or otherwise, determine the exact values of b and c such that AS-quadratic functions are formed.

Give your answers in the form
$$\frac{-p \pm q\sqrt{s}}{2}$$
 where $p, q, s \in \mathbb{Z}^+$. [5]